The Normal Swallow: Is It Really What You Think It Is?

Caroline M. Brindo, MA/CCC-SLP, BCS-S
Clinical Manager, MBS Envision, Ohio
cbrindo@mbsenvision.com

Rachel Maxbauer, MA/CCC-SLP
Lead SLP, MBS Envision, Michigan
rmaxbauer@mbsenvision.com
Disclosures

Caroline Brindo
• Financial: Clinical Manager-Ohio MBS Envision, Inc
 • They pay me
• Non-financial: none

Rachel Maxbauer
• Financial: SLP- Michigan MBS Envision, Inc
• Non-financial: none
What is normal?: Oral

• Oral tongue under voluntary control
 • Manipulates bolus in mouth for chewing
 • Senses volume and viscosity
 • Subdivides food as needed
 • Seals against lateral and anterior alveolar ridge
 • Propels bolus posteriorly
 • Upward movement of midline
 • Keeping pressure against tail of bolus
 • Bolus is cleared from oral cavity

Logeman, 1983
What is normal?: Pharyngeal

- Moves into involutory control
 - Soft palate elevates
 - Laryngeal elevation
 - Hyoid excursion
 - Laryngeal vestibule closure
 - Pharyngeal stripping wave
 - Pharyngeal contraction
 - PES opening
 - Full BOT retraction
 - Clearance of bolus through PES

Martin-Harris et al, 2008
What is normal?: Esophageal

• Involuntary (except for the extremely talented)
 • Relaxation of esophagus and LES
 • Peristaltic contraction
 • Bolus cleared into stomach by gravity and contraction

Goyal, 2006
What is disordered?

• “A disruption to the normal functioning”
 • Oxford dictionary
The perfect patient
Normal?: Test your skill!
Variations on normal?

• Can vary with:
 • Age
 • Structural changes
 • Congenital conditions
 • Acquired conditions
Age Related Variations

- Increased time through all phases of swallow
 - Oral:
 - Slower bolus formation
 - Longer transfer
 - Pharyngeal:
 - Increased time of bolus in pharynx prior to swallow
 - Increased time of maximum hyolaryngeal excursion
 - Pharyngoesophageal:
 - Increased time for UES relaxation
 - Esophageal
 - Slower clear
- Reaction time to sensory stimuli increases

Age Related Variations

• Sarcopenia
 • Age related loss of muscle mass, organization and strength (Robbins et al, 2006)

• Reduced strength in swallowing mechanisms
 • Reduced isometric tongue pressure
 • Atrophy of the pharyngeal muscles
 • Increase in pharyngeal residues
 • Decrease in amplitude of peristaltic waves in esophagus, decreased pressure in LES and UES

• SWALLOWING IS SUBMAXIMAL
Age Related Variations

• Decreased functional reserve
 • Our ability to adapt to stress
 • Illness
 • Changes in structures
 • Changes in activity level
 • When faced with acute illness, certain medications, etc can be more prone to dysphagia
Structure Related Variations

• Certain structures can change “normal” swallow patterns
• Apples vs Oranges?
Structure Related Variations: Torus Palatine

- Bony protrusion on palate
 - Midline
 - Fairly common
- Increases oral phase time and coordination
- Can increase in size with age

Neville et al., 2002
Structure Related Variations: Dentition

• Full dentures=Normal dentition?
 • More muscle activity
 • Larger bolus particles
 • Mastication in denture wearers near to mastication of people with neuro impairment Woda et al, 2006

• Longer deglutition
 • Increased time for total swallow in edentulous normal
 • Gokce et al, 2012
Aortic Arch

- Aortic arch snug against esophagus
- Just below the clavicle
- Slow down of bolus at this impingement
- Can increase with age
- Also the area of lowest amplitude of peristaltic wave
Human Related Variations

• Differences in “normal”
• Normal vs Perfect
• What is normal for YOU??
Human Related Variations: Mastication

- How do you assess mastication?
 - Time? Strokes? Pattern?
 - Clinically vs Instrumentally

- Time, pattern, strokes wide variability
 - More consistent is granularity of bolus
 - Mishellany et al, 2006

- Influencing factors
 - Salivary flow
 - Bolus type, size
Human Related Variations: Piecemeal Deglutition

- Multiple swallows per bolus
- Normal
 - Dziadziola, 1992
 - Incidence of multiple swallows per bite across disordered and normal for liquids and paste
 - Ertekin, 1996
 - Seen in normal in bolus size larger than 20 mL
Human Related Variations: Premature Spillage

• **Normal**
 • Saitoh, 2007
 • accumulation of solid bolus into pyriforms
 • One subject with bolus in pyriforms for 14 seconds
 • **Stephen et al, 2005**
 • distance between head of bolus and tongue base/ramus intersection varied from 47.4 mm above to 34.9 mm below among subjects
 • within subjects varied 25.8 above to 15.5 below
 • **Mendel, Logemann, 2007**
 • 100 normal subjects
 • Timing in relation to UES opening
 • Wide variability with volume, consistency and age
Premature Spillage

- Premature? Spillage?
 - Implications of terminology
 - Passive loss vs Active propulsion
- Disordered
 - Impaired bolus containment/control
 - Delayed pharyngeal onset
Penetration

- 2010 Allen et al: Penetration found in 11% normal
 - 9.3% under 65 years; 14.3% over 65 years
 - More likely with liquids, more likely with larger bolus size

- 2007 Dagget et al: Penetration found in normal
 - 7.4% of swallows under 50; 16.8% swallows over 50
 - No sensorimotor response to penetration

- 1999 Robbins et al: Normal vs abnormal penetration
 - All penetration in “normal” group: 2 or 3 on PAS
 - No scores of 4 or 5 in the healthy group
Aspiration

• Normal?
 • Robbins et al, 1999
 • During development of PAS
 • Normal subjects with worse PAS score on first swallow of new condition
 • Normal subject with aspiration
 • Butler et al, 2009
 • Normal subjects with aspiration
 • 3% of 545 swallows resulted in aspiration
Aspiration

• Normal?

• Sleep studies
 • Gleeson et al, 1997
 • Found aspiration of secretions during sleep in healthy normal
 • Huxley et al, 1978
 • Aspiration in 45% of normals during sleep
 • Non-aspirators slept poorly
Condition Related Variations

- Apples vs Oranges?
- Normal vs Perfect
Down’s Syndrome

• Oral anatomical differences
 • Macroglossia, small oral cavity, hypotonia, hypersensitivity
 • No correlation between severity of oral differences and aspiration
 • (Frazier, Freedman, 1996)
• Oral phase dysphagia
 • 63%
 • Not a predictor of pharyngeal dysphagia, aspiration
 • Jackson et al, 2016
• Higher incidence of digestive disorders
Dementia

• Motor and sensory changes
• Oral holding/pocketing
• Anterior oral bolus loss
• Longer length of time in pharynx prior to swallow onset
• Age related changes?

Easterling & Robbins, 2008
ALS

• Anterior oral bolus loss
• Difficulty with bolus formation/transfer
• Slowed initiation of pharyngeal phase
• Increased meal duration
• Fatigue with meal progression

C. Brindo R. Maxbauer MSHA 2017
cbrindo@mbsenvision.com
Parkinson’s

- Prolonged oral transfer
- Increased tongue movement
- Prolonged oropharyngeal transit
- Decreased sensation
 - Silent aspiration
- Slowed clear through esophagus and LES
- Slowed return to pre-swell position

Bushman et al, 1989; Johnston et al, 1995; Leopold & Kagel, 1997;
Normal or Disordered???

• Think critically about your patient
• ASHA Preferred Practice Guidelines
 • Swallow assessment should include description of normal and abnormal structures and physiology
• ASHA Training Guidelines for assessment
 • VFSS: Identification of normal and abnormal anatomy and physiology
 • FEES: Identification of viewable normal and abnormal anatomy and physiology
 • Clinical: Knowledge of normal and abnormal anatomy and physiology
Normal or Disordered???

• What other clues??
 • Lung status
 • Patient QOL
 • Dental status
 • History
 • Nutritional status/hydration
 • Weight maintenance
 • PO intake
 • Co-morbidities
 • Cognitive status
 • Mobility
Ethical Considerations

• ASHA: Evidence Based Practice
 • Integration of
 • Clinical expertise
 • External scientific evidence
 • Patient values/preferences

• Medical Necessity
 • Medicare defines:
 • Service that is reasonable and necessary for the diagnosis or treatment of an illness or injury, or to improve the functioning of a malformed body member.
In Conclusion:

- Think critically about the whole patient
- Swallowing: It’s complicated
- What is risk?
- What are we trying to save our patients from?
References

