Current Approaches to Treating School-age Children with Apraxia of Speech and other Speech Sound Disorders

JONATHAN PRESTON, PHD
JOPRESTO@SYR.EDU
ASSOCIATE PROFESSOR
SYRACUSE UNIVERSITY
@JPRESTON_SLP

Disclosures
Some of the research presented here was supported by a grant from Apraxia Kids (www.apraxia-kids.org) as well as NIH grants R03DC012152 and R15DC016426 (J. Preston, PI)

The presenter received an honorarium for this presentation

No other relevant financial or nonfinancial conflicts of interest to report

Agenda

Part II

1:30-3:00 Dynamic Temporal and Tactile Cueing; Rapid Syllable Transition Training
3:00 BREAK
3:15-4:45 Cueing Late Developing Sounds, Speech Motor Chaining
The evidence base of some older and newer approaches, Q&A

Motor Learning Principles

Summary

TO ACQUIRE A SKILL (MOTOR PERFORMANCE)
- Knowledge of performance
- High frequency of feedback
- Immediate feedback
- Many trials per session
- Blocked practice
- Constant practice
- Small stimulus set
- Simple targets

TO RETAIN A SKILL (MOTOR LEARNING)
- Knowledge of results
- Lower frequency of feedback
- Delayed feedback
- Many trials per session
- Random practice
- Variable practice
- Large stimulus set
- Complex targets

Challenge Point Framework

Maximum learning requires challenging the client

Optimum learning is a function of:
- Client's skills/knowledge
- Information available (feedback from SLP)
- Task difficulty (stimuli)

Rvachew & Brosseau-Lapré (2012); Guadagnoli & Lee (2004); Hitchcock & McAllister Byun, 2014

CAS Treatment

A MOTOR LEARNING PERSPECTIVE
Challenge Point Framework
We should be constantly adapting the task and the information available to facilitate learning
- But my goal for today is, “Child will produce phrases containing bilabials with minimal cueing.”
- This is not flexible!
- We are working toward adaptive paradigms for treatment.

CAS Treatment
Dynamic Temporal & Tactile Cueing (DTTC)
Rapid Syllable Transition Training (ReST)
Speech Motor Chaining
Biofeedback
Other “hot topics” in CAS

DTTC
DYNAMIC TEMPORAL & TACTILE CUEING
INTEGRAL STIMULATION

DTTC/Integral Stimulation
Emphasize the movement, not isolated sounds
“Listen to me, what me, do what I do.”
Increase complexity
- Start with simple syllables (my, bye, do), progress to harder words (mom, bob, dad, hi), then progress to phrases (e.g., “hi mom”)
Within one level of complexity, fade cues (max → min)
- Simultaneous production, direct imitation, delayed imitation, visual cue
- Vary prosody

DTTC: Levels of Support

Vary rate, prosody at all levels
DTTC/Integral Stimulation

When the production is incorrect, SLP provides verbal or quick tactile cue and moves back a step on the continuum based on the support needed by the child.

Uses a small number of stimuli that are presented within modified blocks:
- 5 words produced ~15 – 20 times each
- 3 different blocks

Child must be able to imitate

DTTC/Integral Stimulation Case Study

You meet Tommy, a 4 year old with severe CAS. Tommy displays:
- the ability to produce CV, CVCV, and a limited range of VC and CVC syllable shapes.
- He displays the ability to produce /b, m, p, n, d/ and simple vowels /a, i, u, o/, he does not produce these consistently across contexts.
- He frequently displays vowel distortions across all syllable shapes, exhibits timing errors (voicing, nasality) and omits final consonants. You decide to try DTTC and target movement gestures for VC and CVC syllable shapes.

What are 2 target words that you could select in treatment that follow VC and CVC shapes and include sounds in his inventory?

Practice DTTC by moving up and down the cueing hierarchy – one person is the client, another the SLP. Be adaptive!

Rapid Syllable Transition Tx (ReST)

A program designed to adhere to motor learning principles for CAS

Feedback/training focuses on:
(a) articulatory accuracy (SOUNDS)
(b) appropriate stress (BEATS)
(c) smooth syllable transitions (SMOOTHNESS)
Rapid Syllable Transition Tx (ReST)

Select 20 nonsense words appropriate for the client
- 10 beginning with stressed syllable (e.g., DInarop)
- 10 beginning with unstressed syllable (e.g., reGLision)
- Phonemes already in client’s inventory

Pre-practice (about 10 minutes)
- Focus on performance/acquisition
- Blocked practice
- Immediate KP feedback on all trials
- Teach concept of accuracy, beats, smoothness
- Correct trials must be correct in all 3 aspects
- Pre-practice ends when the client has 5 correct productions
- Sessions 1 & 2 allow for 20 minutes of pre-practice to teach these concepts; if pre-practice exceeds 20 minutes without 5 correct, move to 2-syllable words

Don’t forget Prosody!

Contrast stressed and unstressed syllables
(big blocks vs. little blocks)

Practice (motor-learning focused)
- 20 nonsense words are randomized
- Only delayed knowledge of results feedback
 - “Good” or
 - “Not that time.”
- Feedback frequency is reduced throughout practice
 - 18/20 items, then 14/20 items, then 10/20 items, then 6/20 items, then 2/20 items
- On average, feedback (delayed KR) is given on 50% of trials per session

Rapid Syllable Transition Tx (ReST)

Pre-practice Example

<table>
<thead>
<tr>
<th>Target</th>
<th>Child’s Response</th>
<th>SLP Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>DInarop</td>
<td>DINAROP</td>
<td>“The beats weren’t right”</td>
</tr>
<tr>
<td>DInarop</td>
<td>DInawop</td>
<td>“The /r/ wasn’t right”</td>
</tr>
<tr>
<td>DInarop</td>
<td>DInarop</td>
<td>“Good. You got the sounds, and beats, and it was smooth!”</td>
</tr>
<tr>
<td>aREElow</td>
<td>a. REE. low</td>
<td>“You didn’t connect all the sounds. Keep it smooth, no pauses”</td>
</tr>
<tr>
<td>aREElow</td>
<td>aREElow</td>
<td>“Good. You got the sounds, the beats, and it was smooth.”</td>
</tr>
</tbody>
</table>

Practice Example

<table>
<thead>
<tr>
<th>Target</th>
<th>Child’s Response</th>
<th>SLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>graDAYmiture</td>
<td>graDAYmiture</td>
<td>(delay) “Good.”</td>
</tr>
<tr>
<td>aREElow</td>
<td>a. REE. low</td>
<td>(delay) “Not quite that time.”</td>
</tr>
<tr>
<td>DInarop</td>
<td>DINAROP</td>
<td>(delay) “Not quite that time.”</td>
</tr>
<tr>
<td>reGLision</td>
<td>weGLision</td>
<td></td>
</tr>
</tbody>
</table>
Rapid Syllable Transition Tx (ReST)

How are pre-practice and practice different?
What principles of motor learning do you see in practice?

Nonsense words are treatment target (use written stimuli). Thoughts?

Rapid Syllable Transition Tx (ReST)

FREE materials, manuals, training videos, syllable generator:
http://sydney.edu.au/health-sciences/rest/resources.shtml

Is ReST appropriate for my client?

Has been used with children ages 4-13 years

Evidence
- Ballard, Robin, McCabe, & McDonald (2010)
- Thomas, McCabe, Ballard (2014)
- Thomas, McCabe, Ballard, & Lincoln, (2016)

Rapid Syllable Transition Tx (ReST)

Case Study

Tommy is now a third grader. He has mastered most of the “early 8” and “middle 8” phonemes. However, he is inconsistent on (but stimulable for) /ʃ, tʃ, dʒ/. He is not stimulable for /r, l, s, z/. He has frequent errors on lexical stress and he often separates syllables.

You decide to try ReST
1. What are three appropriate 3-syllable nonsense words
2. Teach sounds, beats, smoothness in these nonsense words in Pre-practice
3. Now try Practice on these 3 nonwords
 - Randomize, only KR feedback. Reduce feedback!

Rapid Syllable Transition Tx (ReST)

Case Study

Tommy is now a 7th grader. His prosody is pretty good although there are still some occasional errors in stress and/or instances of syllable segregation.

He is not yet stimulable for /r/, /s/, /l/

How do you teach these sounds?
Cueing Late-Developing Sounds

MAKING SURE YOUR PRE-PRACTICE AND YOUR KNOWLEDGE OF RESULTS FEEDBACK IS SPECIFIC!

Be Specific in Your Cues

Avoiding cueing “move your tongue.”

Be specific. The tongue is 3-dimensional and has functionally distinct parts.

Be Specific in Your Cues: /r/

KNOW THE PHONETIC REQUIREMENTS OF THE SOUND

HAVE A GOOD GUESS AT WHAT YOUR CLIENT IS DOING WRONG

<table>
<thead>
<tr>
<th>Correct /r/</th>
<th>Distorted /r/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front of tongue (tip, blade, anterior dorsum)</td>
<td>Up off floor of mouth toward hard palate</td>
</tr>
<tr>
<td>Posterior tongue dorsum</td>
<td>Low</td>
</tr>
<tr>
<td>Tongue root</td>
<td>Back in pharynx</td>
</tr>
<tr>
<td>Sides of tongue</td>
<td>Against back teeth</td>
</tr>
</tbody>
</table>

Be Specific in Your Cues: /r/

Tongue-palate contact

Tongue shape

Correct /r/ Correct /r/

These ultrasound images of the tongue are from a 7-year-old with a derhotoxicized /r/ and /ɾ/. Notice the front of the tongue stays low during the rhotic sound.

Be Specific in Your Cues: /r/
Be Specific in Your Cues: /r/

Analogies

Marble Boat Bird Camel

Be Specific in Your Cues

Use visual strategies to help children understand phonetic placement

- https://www.seeingspeech.ac.uk/ipa-charts/
- Sagittal ultrasound and animated images show children where the tongue should be in the mouth and what approximate shape
- Electropalatography images show where tongue contacts the hard palate

Be Specific in Your Cues: /s/

KNOW THE PHONETIC REQUIREMENTS OF THE SOUND

<table>
<thead>
<tr>
<th>Correct /s/</th>
<th>Lateralized /s/</th>
<th>Dentalized /s/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front of tongue (tip/blade)</td>
<td>Tip up to alveolar ridge forming a groove OR Tip down, blade up to alveolar ridge forming a groove</td>
<td>Tip up to alveolar ridge No groove</td>
</tr>
<tr>
<td>Sides of tongue</td>
<td>Against back teeth</td>
<td>Lacking lateral contact</td>
</tr>
</tbody>
</table>

Cues for lateralized distortions of /s/, /z/, /ʃ/, /ʧ/
- Lift sides of the tongue up
- Press sides of the tongue against back teeth (molars)
- Air should go down the center of the tongue, not out the sides
- Make a groove in the middle of the tongue

Be Specific in Your Cues: /l/

Press the tip behind the top front teeth only
Speech-Motor Chaining

Core syllable patterns: CC, VC, CC
Core syllable is targeted, then build around it

Young (1987)

Speech Motor Chaining

Forward Chaining
◦ /re/ → raid → radio → radio station
◦ /lo/ → load → loading → loading the truck

Backward Chaining
◦ /ro/ → rose → arrows → shoot the arrows
◦ /tʃ/ → witch → sandwich → make a sandwich

[cf. Preston et al., 2013, 2014]

Speech Motor Chaining

Pre-practice — Focus on acquisition of target syllable
◦ Cue, cue, cue
◦ Feedback, feedback, feedback, feedback
◦ Make it easy. Give lots of help. Aim for success

Practice — practice the target
◦ Less cueing/feedback
◦ Make it systematically harder (but achievable)
◦ Aim to challenge the child. Some errors are okay.
◦ Focus on motor learning

Speech Motor Chaining

General Session Structure

Pre-practice
– Focus on acquisition of target syllable
◦ Cue, cue, cue
◦ Feedback, feedback, feedback, feedback
◦ Make it easy. Give lots of help. Aim for success

Practice
– practice the target
◦ Less cueing/feedback
◦ Make it systematically harder (but achievable)
◦ Aim to challenge the child. Some errors are okay.
◦ Focus on motor learning

Speech Motor Chaining

Practice Conditions

Increasing complexity in 5 levels
◦ Syllables → monosyllabic words → multisyllabic words → phrases → sentences
◦ All in one session, if possible

Reducing amount of feedback
Changing type of feedback
Encouraging self-monitoring
Adding prosodic variation
◦ Varied rate (fast, slow)
◦ Varied loudness (loud, whisper)
◦ Varied intonation (rising, falling)
Speech Motor Chaining Practice Conditions

Practice occurs in blocks of 6 consecutive attempt

Decision is made after 6 attempts:
 ◦ Do I make the task harder?
 ◦ Do I make it easier?

We use 5/6 correct as our criteria for advancing

Speech Motor Chaining Sample Data Sheet

Speech Motor Chaining Video Examples

Speech Motor Chaining Free Resources

Manuscript, sample speech motor chaining data sheet, video examples freely available https://osf.io/5jmf9/

Case Study

Tommy is now a 8th grader. His is still not yet stimulable for /r/, /s/, /l/

How do you teach these sounds?

Biofeedback Approaches

ON THE HORIZON
Ultrasound biofeedback training

Ultrasound may be a useful biofeedback tool for correcting certain errors on lingual phonemes
- Liquids /r, l/
- Lateralized sibilants
- Velars
- Alveolars
- Vowels

*For CAS, ultrasound may give clients additional information about sequencing skills

What is ultrasound biofeedback and why might we want to use it?

Facilitate Acquisition
Teach stimulability for new sounds
Provide detailed feedback about tongue movements (Knowledge of Performance feedback)

Interpreting the Images: Sagittal view
Images courtesy of Suzanne Boyce

Alveolar Consonants
What do you expect to see happening? /t, d, n/

Velar Consonants
What do you expect to see happening? /k, g, ŋ/
Rhotic sounds /r/

English /r/ has a complex articulatory configuration consisting of **two major tongue constrictions**:
1. Anterior (oral)
2. Posterior (pharyngeal)

Sagittal view

Bunched /r/

Distortion

Notice low tongue tip/blade, high tongue dorsum
Ongoing efforts

Study in Syracuse testing whether ultrasound biofeedback improves treatment outcomes for kids with CAS

- Visual feedback can be used for /r, l, s, z, k, g, n, t, d, dʒ, ŋ, j/

Also testing the effects of intensive therapy vs. traditional scheduling

SpeechProductionLab.syr.edu

Other current topics in CAS

Non-speech Oral Motor Exercises to address speech?
Summary

Consider incorporating Principles of Motor Learning into treatment to facilitate generalization
- DTTC can be an effective approach for moderate to severe CAS
- ReST may be appropriate to address prosody and transitioning between sounds and syllables in moderate CAS
- Speech motor chaining (with or without ultrasound) may help establish consistent speech sounds or syllable transitions in varied stress patterns for mild or moderate CAS

Keep up the great work!
PhDs are always needed!
SpeechProductionLab.syr.edu
Evidence Summary - Childhood Apraxia of Speech – September 2018
McCabe, P., Murray, E. & Thomas, D.

This document is a free summary of the current evidence on assessment, diagnosis and treatment of Childhood Apraxia of Speech (CAS; aka Dyspraxia). Please seek advice from your speech pathologist. This evidence summary is only valid until December 2021.

Background
Childhood Apraxia of Speech is a severe permanent and lifelong disorder of speech motor programming and planning which is present from birth and does not naturally resolve. In recent years, substantial progress has been made in improving speech pathology treatment for CAS but there remains a large number of older children, adolescents and adults who have severe limitations to all aspects of their lives due to ineffective and/or insufficient treatment in earlier years. Recent advances in treatment efficacy in preschool and primary years should reduce this extended prevalence tail over time however there is emerging evidence that a significant burden of psychosocial, educational, economic and communication deficits remains across the lifespan with resultant restrictions on participation and daily life.

Most people with CAS have an idiopathic diagnosis (unknown cause) however CAS can co-occur with all other developmental conditions including other communication disorders. In recent years, a spate of genetic micro duplications and deletions have been reported in syndromic presentations of CAS and there is a particularly prominent familiar presentation associated with severe CAS with dysarthria and language impairment associated with a particular FoxP2 genotype. CAS has increased frequency in children and adults with galactosaemia, epilepsy, or Down Syndrome but has no increased prevalence in children with autism above the population prevalence of approximately 1 in 1000 children.

CAS may occur as an isolated disorder or may present in combination with other speech, language, literacy and developmental disorders.

Assessment
Diagnosis of CAS requires skilled assessment by a suitably qualified and experienced speech pathologist. Best practice in assessment depends on the child’s age, severity and comorbidities.

Suggested Assessment protocols

<table>
<thead>
<tr>
<th>Younger or more severe speech impairment</th>
<th>Older or milder speech impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single word speech sound inventory – word list does not have to be standardised but should include at least 50 common words appropriate for age and cultural background with a range of sounds and syllables</td>
<td>Single word test using at least 30 polysyllabic words appropriate for age, language, accent and culture and including weak onset word structures</td>
</tr>
<tr>
<td>Oral musculature structural and functional evaluation</td>
<td>Oral musculature structural and functional evaluation</td>
</tr>
<tr>
<td>Diagnostic evaluation of motor speech skills (DEMS) or TOCS+ or Nuffield Dyspraxia Programme – 3rd edition assessment</td>
<td>Speech diadochokinesis tasks (e.g. ‘peteke’)</td>
</tr>
<tr>
<td>Hearing assessment prior to speech pathology assessment</td>
<td>Sample of connected speech including polysyllabic words (words of 3 or more syllables)</td>
</tr>
<tr>
<td></td>
<td>Measure of inconsistency such as DEAP, SRT or repeated productions from the single word test used.</td>
</tr>
</tbody>
</table>

Diagnosis of CAS requires that a child at a minimum meets all three ASHA (2007) consensus-based features of CAS:

1. Inconsistency across words and syllables
2. Lengthened and disrupted coarticulatory transitions.
3. Inappropriate prosody.

Additionally, for a diagnosis of CAS to be accurate, children need to have a clear intent to communicate regardless of age or severity.
Severity of CAS has not been formally defined within the literature however clinicians may use the following factors in determining severity:

1. Intelligibility – children with more severe CAS will struggle to be intelligible even to immediate family.
2. Speech inventory (number of sounds and syllable structures) in comparison to other people of the same chronological or language age.
3. Number of features of CAS present and severity of features. These lists of features come from two sources (ASHA, 2007 and Shriberg, Potter and Strand, 2010).
4. In older children, adolescents and adults: Difficulty saying new or longer words, avoiding speaking tasks such as using the phone, social isolation or reduced quality of life.

Treatment

Until 2015 there were no randomised control trials in treatment of CAS. Murray, McCabe and Ballard (2015) reported an RCT comparing the Nuffield Dyspraxia Programme (3rd ed; NDP3) with Rapid Syllable Transition Treatment (ReST). Both treatments were effective in changing the speech of children aged 4-12 with CAS. NDP3 had better immediate effect and ReST had better long term effect. Both treatments are therefore currently recommended when delivered as per the RCT (ie 4 days per week for 3 weeks @ 1 hour per day). These two are gold standard at this stage although work is underway on RCTs evaluating other CAS treatments.

Three systematic reviews have been conducted in the past 5 years. The first two (Murray, McCabe & Ballard, 2014 and Maas, Gildersleeve-Neumann, Jakielski & Stoeckel 2014) examined a broad range of treatment evidence for a range of quality measures. Murray et al recommended clinicians use

1. Rapid Syllable Transition Treatment (ReST)
2. NDP3
3. Dynamic Temporal and Tactile Cueing (DTTC)
4. Integrated Phonological Awareness (IPA)

From this list, ReST and IPA are suitable for less severe and/or older children. DTTC and NDP3 are more suitable for younger and/or more severe children. Resources and training for ReST, IPA and DTTC are freely available on the internet and NDP3 is a kit which can be purchased from the UK.

Maas and colleagues (2014) examined the treatment research to determine likely treatment approach and dose. They reported that on average effective treatment requires 2-6 sessions per week for an undescribed maximum (more than 1 year). In addition to the treatments listed above, Maas (2014) also included:

5. Ultrasound biofeedback

This is more suitable for primary school aged children and older with milder speech issues. Ultrasound biofeedback is beyond the scope of many clinicians due to costs of equipment.

In the most recent systematic review, Morgan, Murray, and Liégeois (2018) in the Cochrane Database reported that only ReST and NDP3 had RCT level evidence and called for more treatment research. They noted that there is now also single case experimental design evidence that ReST can be effective when delivered by telehealth 4 days per week and when provided twice per week face-to-face. In both of these service delivery options, the long term effect appears to be poorer than face-to face 4 days per week.

Effective treatment for children with CAS and comorbid speech disorders needs to take into account both evidence for CAS treatment and for dysarthria treatment. For example, a child with dysarthria and CAS may benefit from DTTC which has evidence of efficacy with both disorders.

Other treatments have less well developed evidence and should be undertaken with caution as they have not yet been shown to be effective in multiple studies of children who clearly had CAS.

Treatment Intensity

The CAS treatment evidence shows that therapy 4 times a week in blocks of 12-15 sessions followed by a 4-6 week break from therapy is optimal (Murray et al, 2015). All studies to date have shown that the greater the treatment intensity the more effective the therapy and the more efficient the progress (e.g. Edeal and Gildersleeve-Neumann, 2012). A minimum of two sessions a week has been shown to work clinically (e.g. Namasivayam et al, 2015; Thomas et al, 2014). Session length ideally should be 45-60 minutes but will depend on both the child and the treatment selected.
Group Therapy
There is no evidence for any group treatment being trialled in any level of research with any person with CAS since 1960. Group treatment is not recommended for any CAS feature and there is no theoretically sound reason for it to be trialled. People with CAS may benefit from evidence-based group therapy interventions for their co-morbid conditions but again there is no research evidence for such treatments in people with CAS who have comorbid conditions.

Therapy by people who are not Speech Pathologists.
There is very limited evidence that therapy for CAS can be provided by anyone other than a speech pathologist. In all but three studies, speech pathologists have provided therapy. Two studies (Thomas et al 2017; Lim in press) have trialled parent delivered therapy with limited success and it is not currently recommended. One study (Lim et al, 2019) has trialled teacher’s aides providing DTTC therapy which was moderately successful.

References
Speech Motor Chaining Datasheet

Syllable	Feedback Score	Self-Rate Monosyl Wd	Pros Cue Feed-back Score	Self-Rate Multisy Wd	Pros Cue Feed-back Score	Self-Rate Pros Cue Feed-back Score	Self-Rate Pros Cue Feed-back Score	Generated Pros Cue Feed-back Score	Self-Rate Pros Cue Feed-back Score	Self-Rate Pros Cue Feed-back Score	Self-Rate

Form developed by J. Preston, Syracuse University
Speech Motor Chaining Datasheet

<table>
<thead>
<tr>
<th>Syllable</th>
<th>Feedback Score</th>
<th>Self-Rate</th>
<th>Monosyl. Wd</th>
<th>Pros Cue</th>
<th>Feedback Score</th>
<th>Self-Rate</th>
<th>Multisyl. Wd</th>
<th>Pros Cue</th>
<th>Feedback Score</th>
<th>Self-Rate</th>
<th>Phrase</th>
<th>Feedback Score</th>
<th>Self-Rate</th>
<th>Generated Pros Cue</th>
<th>Feedback Score</th>
<th>Self-Rate</th>
</tr>
</thead>
</table>

Form developed by J. Preston, Syracuse University