# Teeth, No Teeth and Mastication

### Kerry Winget, CCC-SLP/A, BRS-S MSHA 2018



### Disclosures

No relevant financial or non-financial relationships to disclose regarding this presentation's subject matter.



## Outline

- 1. Introduction
- 2. Dental Primer
- 3. Mastication Process
- 4. Tooth Loss
- 5. Dentures
- 6. Bite Force
- 7. Dentition Effects on Nutrition
- 8. Conclusions



## Learning Objectives

- 1. Learn 3 mastication characteristics of natural adult teeth
- 2. Learn 3 characteristics of edentulous mastication
- 3. Learn 3 effects of dentition on nutrition in older adults



### **Misconceptions**

## "A patient with no teeth is not capable of managing solid consistencies." "Edentulous patients should be on a puréed diet." *''If a pt is on purée, they need their meds crushed.''*

"Any denture is better than none."



Chewing Process initiates digestion responses throughout the whole body.

- Saliva
  - Pylorus Relaxes
- Taste receptors
  - Stomach acid production
  - Pancreatic enzyme production



### Well chewed food

- Efficient digestion
  - Nutrients maximized
  - Equalized digestion responses
- Dental stimulation/workout
- Healthy consumption quantity



*Poorly* chewed food

- Incomplete digestion
  - Nutrients not extracted
  - Undigested food sits in the colon
    - Bacterial growth
    - Gas, bloating
    - Flatulence



### **Dental Primer**

**Evolutionary Changes** 

- Size of teeth and jaw
- Wear patterns



**Causal Theories** 

- Diet Characteristics
- Genetic Deselection



## Dental Primer - Types

32 Adult/permanent teeth: 16 upper/16 lower

Main function= Nutritive Chewing

Dental classifications of teeth

- Incisors
- Canines
- Premolars
- Molars



Each type is well-defined in position and function.



## Dental Primer - Incisors



#### Function

- Shear or cut food.

### Position

- Visibility

#### Features:

- Upper incisors - Shovel shape



### **Dental Primer - Canines**

Function -Rip and tear

Position

- Curve of the arch

#### Features

- Strongest
- Guide biting
- V shaped



# Dental Primer – PreMolars/Bicuspids



### Function

- Tear and grind
- Pass food

Position

- Posterior to canines

Features

- 2 cusps





#### **Dental Primer - Molars Function** - Crush and grind Central incline Central Incisor Lateral incisor Lateral incisor Canine Canine Position 1st bicuspic Upper 2nd bicuspid - Most posterior 1st molar 2nd molor 3rd molar Right Left 3rd molar Features 2nd molar 1st molar 2nd bicuspid Lower - 4-5 cusps 1st bicuspid Canine anine - powerful Lateral incisor Lateral Inchar Central Incisor Central Incisor



1st bicuspid

2nd bicuspid 1st molar

2nd molor

3rd molar

3rd molar

2nd molar 1st molar

2nd bicuspid

st bicuspid

www.orftvo-experience.com

### Dental Primer - Anatomy

Crown *- the enamel* Degrades over time

- Abrasion
- Elongation
- Erosion
- Decay



### Dental Primer - Anatomy

Alveolar bone

- Alveolar bone proper
- Supporting alveolar bone

Dynamic through the lifetime

- Gum health
- Direct Pressure
- Skeletal bone density



Alveolar Ridge Reabsorption

- By 3<sup>rd</sup> month
- By 6<sup>th</sup> month
- By 3<sup>rd</sup> year



### **Reabsorption Factors**

- Dentures
- Nutrition deficits



Help Wanted Men having at least two upper and two lower opposing front teeth. Uniform and gun provided.



**Occlusional Advantage** 

- Uniform Surface
- Single Cusp/Trough
- Interlocking





Occlusional Advantage - Interlocking Series





Functional Tooth Units Posterior Occluding Pairs

World Health Goal - 20 natural or 4 FTUs



Chewing is part of the normal eating process.

- Bolus formation
  - Malleable
  - Lubricated
  - Cohesive.

Primarily semi-autonomic act, but can be mediated by high conscious input.

Chewing energy - Force through the bolus



Food

- Cheek/tongue move it between teeth
- Jaw muscles bring teeth into cyclic contact, repeatedly occluding.
- Becomes softer and warmer as enzymes begin breakdown

Feedback from the proprioceptive nerves in the teeth and TMJ develop neural pathways with govern duration and force of chewing muscle activation.



**Process Model of Feeding** 

- -Stage I Transport: solid moves from anterior to post canines for mastication
- -Processing: reduce food to a swallowable consistency

-Stage II Transport: move chewed food posteriorly from oral cavity to pharynx



Characteristics -Male more efficient than female -Male more forceful than female

Breakdown Patterns

-Broader bite size when fast chewed -Narrower bite size when slow chewed



Swallow Threshold Triggers -Food Particle Size -Lubrication/Cohesiveness

Oral physiology **VS**. food characteristics



Loss of teeth:

- -Loss of occlusal surface
- -Loss of periodontal receptors
- -Loss of vertical dimension
- -Loss of jaw stabilization
- -Prefrontal deactivation



Loss of teeth:

## -Increases number of chews -Decreased bolus viscosity

-Increased size of 'swallowable' bolus



# **Edentulous Mucosal Pain:** -Pain mapping Increases anterior to posterior alveolus Decreases anterior to posterior palate

ridge crest to buccal vestibule





### Tooth Loss Scary Statistics



36 Million Americans have no teeth 120 Million are missing at least 1 tooth Geriatric – 2:1 ratio (23 Million)



### **Tooth Loss Statistics**

Top states for most toothless seniors from extractions due to decay or disease

- 1. West Virginia 33.7%
- 2. Kentucky 23.9%
- 3. Missouri 22.5%
- 11. Michigan 12.9%





### **Tooth Loss Statistics**

Seniors over 65 have average of 18.9 teeth remaining

Fewer teeth in black seniors

- chronic smokers

- lower income levels
- less education

Nationwide, 27% have total loss of teeth.



### **Tooth Loss Statistics**

Worldwide problem

- Diet
- Dental care access
- Awareness/Acceptance



### Dentures

"Glass eyes don't see, wooden legs don't walk, and dentures don't chew.



### Dentures



### 90% of edentulous adults have dentures.

### Successful suction seal: -Surface gum area -Saliva



*In most cases:* Adhesive means a bad fitting denture.





### **Dentures - Myths**

They last forever.

- Reality: 7-10 years
- Dulling of grinding surfaces
- Pitting/Scratches=bacteria
- Supporting alveolar ridge has shrunken



### **Dentures - Myths**

# Wearing is self-explanatory, just pop it in and eat.

- -Avoid biting with front teeth (use canines)
- -Don't hold liquids in mouth for long time
- -Do distribute food to both sides of mouth when chewing
- -Chew with up-down crush motion



### Dentures

**#1** Complaint/fear Food stuck in/under the denture (54%)

**Top 5** avoided items: 50% Corn on the Cob 34% Apples 33% Nuts 23% Steak 8% Staining Beverages (

8% Staining Beverages (i.e. coffee/wine)



### Dentures

**Energy Distribution** - Through the denture base - Mucosal Tissue - Tolerate limited pressures - Will become thicker - Indiscriminate muscle activity - Masseter muscle

- Posterior strength



### Bite Force – Power of the Jaw

Human jaw works with a Class 3 mechanical advantage of less than 1.

Output force is less than input force.

- A 10lb bite force requires 40lbs jaw muscle contraction.



### Human Mandible

- Double Hinge
  - Open/close
  - Forward/Back
  - Side to side



"Increased tolerance of pressure by the periodontal membrane could often be acquired by changing a soft diet to one needing more vigorous mastication"

Mastication practice 30lbs initial tolerance 100lbs tolerated at 1 month 150lbs tolerated at 3 months



Dr. G.V. Black Lincoln Park, IL



Gnathodynamometer – device created measure gnawing power.

Finding: Limit of the bite force was not due to jaw musculature, but the teeth themselves.

| Natural Teeth  | Males  | Females |
|----------------|--------|---------|
| At the Molar   | 150lbs | 108lbs  |
| At the Incisor | 83lbs  | 57lbs   |

| U/L Dentures       | 20-30lbs |  |
|--------------------|----------|--|
| U Denture, N Lower | 30-40lbs |  |



Bite Force

- Chewing side dominance
- Tooth type
  - Posterior advantage

|                       | Bite Force |
|-----------------------|------------|
| Incisors              | 22-33lbs   |
| Canines               | 72-109lbs  |
| Premolars             | 95-131lbs  |
| 1 <sup>st</sup> Molar | 67-89lbs   |
| 2 <sup>nd</sup> Molar | 107-168lbs |

Edentulous bite force at canine/premolar area =25.8lbs



Phagodynameter – device created to test the force required to crush a food item.

(1895)
45lbs Roast Beef
40lbs Cole Slaw
25lbs Lettuce
20lbs Young Radish

40lbs Tender Ham30lbs Corn Beef20lbs Pork Chop



## **Dentition Effects on Nutrition**

Effects of Age:

- Less Variety
- Less Quantity
- Less Quality

Compromised dentition=further restriction.

Older adults wearing well-fitting dentures showed similar nutrient intake and dietary quality to those with their natural teeth.



### **Dentition Effects on Nutrition**

#### Food Avoidance:

Fruits: Apples, Oranges, Pears

Vegetables: Carrots, Tomatoes, Leafy

Nuts

Cooked Meats

Toast

**Dietary Insufficiency:** 

Folic Acid

Vitamin C

Beta-carotene

Vitamin E

Serum Albumin

Fiber



## **Dentition Effects on Nutrition**

Missing dentition leads to increased consumption

- Carbohydrates
- Rice
- Candy/Sweets

**Special Populations:** 

-Increased benefit from denture use

- -Increased nutritional parameters
- -Increased BMI



## Conclusions

Refine your oral exam

- Locate FTUs/POPs
- Judge flattening/hardening of ridge
- Saliva

Assess any dentures

- Cusp wear
- Seal/fit

#### **Consider** variables

- Gender
- Chewing speed
- Bite musculature
- Stimulability



America's Health Rankings< United Health Foundation, 2018. www.AmericasHealthRanking.org

Dentition. Types of Teeth, Function of Teeth. http://infodentis.com

Denture Care Awareness & Use Report. Prepared for GSK by Radius Global Market Research. January 2015.

Engelen, L. et al. The influence of product and oral characteristics on swallowing. Arch Oral Biol. 2005: 50(8): 739-46.

Helkimo, E., et al. Bite force and state of dentition. Acta Odonto Scand. 1977: 35(6): 297-303.

Hildebrandt, G., et al. Functional units, chewing, swallowing, and food avoidance among the elderly. (1997) Journal of Prosthetic Dentistry. 77(6): 588-595.

Houston, T. Bite Force And Bite Pressure. (2003). http://www.scribd.com

Kamiya, K., et al. Improved prefrontal activity and chewing performance as functional of wearing denture in partially edentulous elderly individuals. PLoS One, 2016: 11(6); e0158070.

Kapur, K., Garrett, N. Studies of biologic parameters for denture design. Journal of Prosthetic Dentistry. 1984: 52(3): 408-13.



Lucas, P., et al. Food breakdown patterns produced by human subjects processing artificial and natural teeth. J Oral Rehabil. 1986: 13(3): 205-14.

Mann, t., Heuberger, R., Wong, H. The Association between chewing and swallowing difficulties and nutritional status in older adults. Australian Dental Journal 2013: 58: 200-206.

Matsuda, I., et al. Mastication performance in older subjects with varying degrees of tooth loss. Journal of Dentistry. 2012: 40: 71-76.

Mioche, L., Bourdiol, P., Peyron, M. Influence of age on mastication: effects on eating behaviour. Nutrition Research Reviews (2004), 17, 43-57.

Morikawa, N. et al. Association of tooth loss with development of swallowing problems in communication-dwelling independent elderly. Journal of Gerontology: 2015: 1548-1554.

Nakagawa, K., et al. Effects of gum chewing exercises on saliva secretion and occlusal force in communication-dwelling elderly individuals. Geriatric Gerontology International 2017: 17(1): 48-53.



Niedermeer, W. Reactions of the oral mucosa to mechanical load stimuli from dentures. Dtsch Zahnarztl Z. 1990 45(8): 443-8.

Number of natural and prosthetic teeth impact nutrient intakes of older adults n the United States. Ervin, R. and Dye, B. Gerodontology. 2012: 29: e693-e702.

Ogawa, T., et al. Mapping, profiling and clustering of pressure pain threshold in edentulous oral mucosa. J Dent. 2004:32(3): 219-28.

The Power of the Human Jaw. <u>https://www.scientificamerican.com/article/the-power-of-the-human-jaw/</u>

Markovic, D., Petrovic, L., Primovic, S. Specifics of mastication with complete dentures. Med Pregl. 1999:52(11-12):464-8.

Palmer, J., et al. Coordination of mastication and swallowing. Dysphagia. 1992:7: 187-200.

Shiga, H., et al. Gender differences in masticatory function in dentate adults. Journal of Prosthodontic Research. 2012: 56: 166-169.



Tata, S., Nandeeshwar, D. A clinical study to evaluate and compare the masticatory performance in complete denture wearers with and without soft liners. J Contemp Dent Pract. 2012: 13(6): 787-92.

Tortopidis, D., et at. Bite force, endurance and masseter muscle fatigue in healthy edentulous subjects and those with TMD. (1999) Journal of Oral Rehabilitation 26(4):321-8.

Yoshida, M., Suzuki, R., Kikutani, T. Nutrition and Oral Status in Elderly People. Japanese Dental Science Review. (2014) 50, 9-14.

